Efficient Bayesian Inference for Partially Observed Stochastic Epidemics and A New Class of Semi−Parametric Time Series Models
نویسنده
چکیده
This thesis is divided in two distinct parts. In the first part we are concerned with developing new statistical methodology for drawing Bayesian inference for partially observed stochastic epidemic models. In the second part, we develop a novel methodology for constructing a wide class of semi−parametric time series models. First, we introduce a general framework for the heterogeneously mixing stochastic epidemic models (HMSE) and we also review some of the existing methods of statistical inference for epidemic models. The performance of a variety of centered Markov Chain Monte Carlo (MCMC) algorithms is studied. It is found that as the number of infected individuals increases, then the performance of these algorithms deteriorates. We then develop a variety of centered, non−centered and partially non−centered reparameterisations. We show that partially non−centered reparameterisations often offer more efficient MCMC algorithms than the centered ones. The methodology developed for drawing efficiently Bayesian inference for HMSE is then applied to the 2001 UK Foot-and-Mouth disease outbreak in Cumbria. Unlike other existing modelling approaches, we model stochastically the infectious period of each farm assuming that the infection date of each farm is typically III unknown. Due to the high dimensionality of the problem, standard MCMC algorithms are inefficient. Therefore, a partially non−centered algorithm is applied for the purpose of obtaining reliable estimates for the model’s parameter of interest. In addition, we discuss similarities and differences of our findings in comparison to other results in the literature. The main purpose of the second part of this thesis, is to develop a novel class of semi−parametric time series models. We are interested in constructing models for which we can specify in advance the marginal distribution of the observations and then build the dependence structure of the observations around them. First, we review current work concerning modelling time series with fixed non−Gaussian margins and various correlation structures. Then, we introduce a stochastic process which we term a latent branching tree (LBT). The LBT enables us to allow for a rich variety of correlation structures. Apart from discussing in detail the tree’s properties, we also show how Bayesian inference can be carried out via MCMC methods. Various MCMC strategies are discussed including non−centered parameterisations. It is found that non−centered algorithms significantly improve the mixing of some of the algorithms based on centered reparameterisations. Finally, we present an application of this class of models to a real dataset on genome scheme data.
منابع مشابه
Bayesian nonparametric hidden semi-Markov models
There is much interest in the Hierarchical Dirichlet Process Hidden Markov Model (HDPHMM) as a natural Bayesian nonparametric extension of the ubiquitous Hidden Markov Model for learning from sequential and time-series data. However, in many settings the HDP-HMM’s strict Markovian constraints are undesirable, particularly if we wish to learn or encode non-geometric state durations. We can exten...
متن کاملTime series forecasting of Bitcoin price based on ARIMA and machine learning approaches
Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...
متن کاملStochastic Variational Inference for Bayesian Time Series Models
Bayesian models provide powerful tools for analyzing complex time series data, but performing inference with large datasets is a challenge. Stochastic variational inference (SVI) provides a new framework for approximating model posteriors with only a small number of passes through the data, enabling such models to be fit at scale. However, its application to time series models has not been stud...
متن کاملExpectation Maximization and Complex Duration Distributions for Continuous Time Bayesian Networks
Continuous time Bayesian networks (CTBNs) describe structured stochastic processes with finitely many states that evolve over continuous time. A CTBN is a directed (possibly cyclic) dependency graph over a set of variables, each of which represents a finite state continuous time Markov process whose transition model is a function of its parents. We address the problem of learning the parameters...
متن کاملBayesian time series models and scalable inference
With large and growing datasets and complex models, there is an increasing need for scalable Bayesian inference. We describe two lines of work to address this need. In the first part, we develop new algorithms for inference in hierarchical Bayesian time series models based on the hidden Markov model (HMM), hidden semi-Markov model (HSMM), and their Bayesian nonparametric extensions. The HMM is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007